Formation of bubble are in Column - $\mathrm{I}$ and pressure difference between them are given in Column - $\mathrm{II}$. Match them appropriately.
Column - $\mathrm{I}$ | Column - $\mathrm{II}$ |
$(a)$ Liquid drop in air | $(i)$ $\frac{{4T}}{R}$ |
$(b)$ Bubble of liquid in air | $(ii)$ $\frac{{2T}}{R}$ |
$(iii)$ $\frac{{2R}}{T}$ |
$(a-ii),(b-iii)$
$(a-ii),(b-i)$
$(a-iii),(b-ii)$
$(a-i),(b-ii)$
A soap bubble, blown by a mechanical pump at the mouth of a tube, increases in volume, with time, at a constant rate. The graph that correctly depicts the time dependence of pressure inside the bubble is given by
A container, whose bottom has round holes with diameter $0.1$ $mm $ is filled with water. The maximum height in cm upto which water can be filled without leakage will be ........ $cm$
Surface tension $= 75 \times 10^{-3}$ $ N/m $ and $g = 10$ $ m/s^2$:
Two spherical soap bubbles formed in vacuum has diameter $3.0\,mm$ and $4.0\,mm$ . They coalesce to form a single spherical bubble. If the temperature remains unchanged, find the diameter of the bubble so formed ....... $mm$
Air (density $\rho$ ) is being blown on a soap film (surface tension $T$ ) by a pipe of radius $R$ with its opening right next to the film. The film is deformed and a bubble detaches from the film when the shape of the deformed surface is a hemisphere. Given that the dynamic pressure on the film due to the air blown at speed $v$ is $\frac{1}{2} \rho v^{2}$, the speed at which the bubble formed is
In Jager's method, at the time of bursting of the bubble